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Spatial correlation of conduction electrons in a metal with a 
complicated geometry of the Fermi surface 

D I Golosovt and M I Kaganov 
P L Kapitza Institute for Physical Problems, Russian Academy of Sciences, VoroLy- 
wskoye C l l auke  2, Moscow 117334, Russia 

Received 6 March 1992, m h a l  form 9 November 1992 

A h s W  m e  'density-densily' "elation funclion (CF) of conduction electmns in a 
metal is investigated. It is shown lhal lhe asymptotic behaviour of the ff depends on 
the shape and the local pomeuy of the Fermi surface (Fs). In particular, the exponent 
of the p e r  law which describes the damping of Friedel oscillaliom at 7 3 m (-4 for 
an isompic Fermi gas) is determined by lhe local geometry of the E. The applicalions 
of lhe mulls oMained to calculations of the CP in a metal near the electmn topological 
lransition and of the RKKY exchange integral arc considered as well. 

1. Intloduction 

In this paper we investigate the 'density4ensity' correlation function (CF) of 
conduction electrons in a metal at T = 0. 

It is well !mown that the CF of an electron gas can be written as 

r = r 2 - r 1 .  

Here the angular brackets indicate the average, An(r) = n ( r )  - E  is the departure 
of electron density n(r) from its average value E, 

is the Rrmi distribution function, p is the momentum and eF is the Fermi energy. 
Note that equation (1) is valid for any (not necessarily isotropic) dispersion law e@). 

Let us recall that, for ~ ( p )  = p2/2m, equation (1) leads to the following 
expression for the CF [I]: 

Y ( T )  ( 3 t c / 2 ~ 2 p p r 4 ) ~ ~ z ( p ~ ~ / t l )  r > R / p p  (3) 

(pp is the Rrmi momentum), which contains Friedel oscillations (ms) [Z] with the 
wavenumber 2pF lh .  

t Also a t  Departmenr of Physics, Rutgea Univeaity, Pisrataway, NJ 088554849, USA 
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One can easily determine the wavenumbers of the FOS (if the direction of the 
radius vector r is given) also in the case of an arbitrary dispersion law. Indeed, the 
long-wavelength behaviour of the CF (equation (1)) is determined by the singularities 
of the integral given by 

as a function of pII. Obviously, S(pII) is simply the square of the section of the 
Fermi surface (FS) formed by a plane perpendicular to the vector p and bcated at 
the distance pll from the origin in pspace. Therefore, the singularities that we are 
interested in correspond to the tangencies of the FS to planes perpendicular to r. 
The nature of these singularities depends on the local geometry of the FS near the 
poins of tangency. 

Therefore the wavenumbers Aki j  of the Fos are the distances in pspace between 
planes tangent to the FS and perpendicular to T (figure 1). It is well known that 
the wavenumbers A k i j  also correspond to the Migdal-Kohn 131 singularities in the 
spectrum of phonons propagating in the direction r/r, as well as to sinylarities in 
the longitudinal plasmon spectrum (cf [4]), etct. Thus, the vectors Aki j  F / T  define 
the distinct points in the reciprocal space; since the present paper is devoted to the 
spatial correlation of electrons, we shall study the effects that occur in the real space. 

PIgum 1. Rather a simple FS ('dumb-bell') for the radius vector rllrl generates eight 
different wavenumbers of FOS (Owing m the symmetry, Aku = Aks,, A&!) = Ak&, 
Ab,, = Akz = A&%, A k s  = Aka, Akn = Aka and Aku = A k s j  The 
encircled numbers enumerate the poinu of fangeng for this case. The total number 
of wavenumben depends on the direction of r: for rllrl there is only the wawnumber 
Ak. 

t Also, the quantities (Ak;,)-' are proportional to the periods of willation of the sound ahrorption 
wtacient m a magnetic field [SI. 
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-- 
Elliptic points Hyperbolic points 

Figure 2. Parabolic p i n t  on the FS (placed at the origin of l o g 1  mordinates e,, &, 
&, where (3 is parallel to the normal). Far a small value of the angle % > 0, there 
are tm, points of tangency in the vicinity of the parabolic point: elliplie (with €1 < 0) 
and hyperbolic (with €1 > 0) and, mrrespondingly, the m a l l  wavenumber Ak m %3/2. 
As B + +O, t h w  pints of tangency approach each other; at % = 0, they mincide at 
the parabolic p i n S  a t  63 < 0, there are no p i n l s  of tangency in the vicinity of this 
parabolic poinl (see also figure Xa)). 

One can also come to the same conclusions if one considers the Fburier 
component of the cF given by 

which is proportional to the volume of the intersection of the FS and its analogue, 
shifted by the vector hk. The singularities of this quantity (as a function of k) 
correspond to the tangents of the FS to its shifted analogue, as well as to k = 0. We 
may conclude tentatively (see section 2 below) that the way in which FOS are damped 
at T -+ 00 is determined by the local geometry of the Fs at the points of tangency. 
Ths,  the behaviour of the e, as well as of many other electronic properties of metals 
[q, is determined by the I% geometry. 

It turns out that one can describe the asymptotic behaviour of the CF at large T 

by the formula 

U(?) = $ X A f A ,  exp(iAlcijT). 
32% r i j  

Here T, = is the average distance between electrons, and the indexes i, j label 
the points of tangency. The factors Ai (which are, in general, functions of T as well 
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as of r/r) depend on the local geomeay of the FS at the corresponding points of 
tangency and have a dimensionality of inverse length. Wing  to the central symmetry 
of the FS, expression (6) is real (obviously, Aki j  = - A k j i ) .  

At i = j ,  Akij = 0 and the corresponding terms in the CF decrease monotonically 
as r increase. These terms are due to the singularity (namely, the discontinuity of 
the first derivative) of v ( k )  at h = 0. 

Usually, one can write the validity condition for equation (6) as Aleij r B 1 for 
any i # j. Note that the wavenumbers Akij (as well as their total number) depend 
on the direction of the radius vector r. 

So far we have discussed the electron gas with an arbitraly dispersion law. The 
coordinate dependence of the CF of conduction electrons in a real metal is not totally 
covered by equation (1). In order to describe this case, one should take into account 
the influence of the periodic potential of the crystal lattice not only on the spectrum 
but also on the electron wavefunctions; the wavefunctions that should now be used are 
the Bloch waves (instead of plane waves). This topic has been considered in detail 
in our previous article [7]. The qualitative results of this straightfonuard although 
somewhat cumbersome consideration are listed below. 

(1) Because of the broken translation invariance, the coordinate dependence of 
the CF v(r l , r2)  is not reduced to the dependence only on the difference T = rt - r ,  
between its arguments. If the value of r is k e d ,  v ( r I , r2 )  is a periodic function of 
rl: 

D I Golmov and MI kkganov 

v(rl,rz) = v(rl,r +rI)  = v ( q  + a , ~  t r ,  t a) (7) 

where a is any lattice period. 
(2) Let us keep r = constant and average v ( r l r r l )  over r l .  Denote the quantity 

obtained by v(r) .  Its asymptotic behaviour will be similar to that described by 
equation (6). The wavenumbers of the FOS are to be determined in the same way; 
the only difference is that now one should imagine the FS as a periodic surface in the 
reciprocal space (and not restricted to the first Brillouin zone alone!). Therefore, the 
expression for v ( r )  should contain a summation over the reciprocal-lattice vector b; 
terms with b # 0 (Umklapp terms) oscillate with a wavenumber Aki j  + b .  r/r. 

(3) The CF contains a term whose oscillation wavelength is the mverse diameter 
of the FS. Note, however, that if the FS is open, a region of radius veCtor r directions 
can exist in which v ( r )  does not oscillate at all. 

Let us now consider the dependence of the CF on the local geometry of the FS. 
For simplicity, we shall restrict ourselves to the analysis of equations (1) and (6); this 
approach may be easily generalized for the case of conduction electrons in a real 
metal [7]. 

2 The effect of the local geometry of the Fermi surface on the correlation function 

From equation (6), it follows that each term in the CF contains the factors Ai,  which 
depend on the local geometry of the FS at each of the two contributing points of 
tangency. The expressions for A;(.) for various cases are listed below. We shall not 
describe the calculations here; this type of description can be found in [7]. 

Let us keep the direction of the radius vector r fixed and consider the factor A;, 
corresponding to the ith point of tangency. 
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(i) If it is an elliptic point, then 

(8) A -2G-'/Z dl - 

where G is the Gaussian curvature (product of the principal curvatures IS]) of the FS. 
(3) For a hyperbolic point of tangency, one obtains 

Ab = &2ilGI-'/2 (9) 

where the sign depends on the direction of the radius vector (i.e. whether it is r or 
-r). 

In these cases, A does not depend on r, and the amplitude of the FOS 
corresponding to a pair of elliptic and/or hyperbolic points of tangency decreases 
at r-+m as T - ~ .  

@U) The domains of elliptic and hyperbolic points on the FS are separated by lines 
ofparabolic points. Apart from a very few exceptions (Na, K, Cs, Rb and Bi), the FSS 
of real metals are rather complex and do contain the l i e s  of parabolic points [6,9]. 

In the generic case, one can choose the local coordinates cl, c2 on the FS in such 
a way that the departure t3 of the FS from the plane, which is a tangent at a parabolic 
point, is 

(here we restrict ourselves to the leading order in I, y). We shall assume, for 
convenience, that B > 0 and C > 0. 

If the point of tangency is parabolic, then 

Here K is the elliptic integral, r is Euler's gamma function and K [ s i n ( ~ / l 2 ) ] r ( i )  U 

1.5. 
Thus we immediately see that, if parabolic points of tangency appear at a given 

direction of r,  then the amplitude of the corresponding term in the CF decreases as 
P - I I / ~ ,  Le. slower than in the usual case. Because parabolic points on the FS are 
not isolated but form continuous lines, there exist cones of radius vector directions 
corresponding to the presence of parabolic points of tangency.* 

Let us now denote by A0 the angle between the normal at the parabolic point 
and the projection of the radius vector onto the plane perpendicular to the line of 
parabolic points (figure 2). At A0 < 0, there are no points of tangency near the 
parabolic points. At A0 > 0, however, both elliptic and hyperbolic points of tangency 
exist and both approach a parabolic point as A0 --t Q Therefore in the there 
appears an additional long-wavelength term which has the wavenumber 

2 x 3-3/2C-'/2(A0)3/2. 

t 1f the R mntains parabolic points, then the angulatities of kinelic characteristics of L e  meld are 
enhanced for the corresponding directions of the quasi-momentum m o r  [lO,ll]. 
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Because of the vicinity of a parabolic point, equations (8) and (9) should be 
modified (one may not take into account the terms quadratic in x, z/ only). Thus, for 
an elliptic point (figure 2, x < 0). we have 

A, Y B-'/2(3CA0)-'/4{1 - [5iC11*/16 x 3'/' (A0)3/2](l/r)} (12) 

and, for a hyperbolic point, we have 

A,, Y iB-'I2(3C AO)-1/4{1 + [C'/Z/2n31/2(A0)3/2][1 - (Sn/Ei)i](l/r)}. (13) 

This distinction between elliptic and hyperbolic points is not so surprising. One has 
to remember that the singularities of u(k) corresponding to elliptic and hyperbolic 
points of tangency are somewhat different. 

Both equation (12) and equation (13) are wlid at 

A0 > ( r2 /C) ' /3 .  (14) 

Suppose that at A0 < 0 there exist 2N points of tangency (here we are taking 
into acmunt the symmetry of the ~ s )  and, therefore, 

2 N -  1 + N ( N  - 1)/2 = N(N+3) /2  - 1 

different wavenumbers of m. At A0 = 0 there appear two new (parabolic) points 
of tangency, and the amount of FO wavenumbers increases by N + 2 Then, at 
0 < A0 5 (rZ/C)'I3,  the crossover occurs (the contribution of each parabolic point 
of tangency turns into the sum of contributions of elliptic and hyperbolic points of 
tangency) and finally at A0 > (?/C)1/3 there are 2(N+2) points of tangency and 

(N + 2)(N + 5)/2 - 1 

FO wavenumbers. 
Let us consider the Gauss map of the Fs (figure 3(a)). The Gauss map is a 

mapping of the surface onto the unit sphere, induced by the normal at each point 
of the surface (the direction of the normal gives a point of the sphere, thus giving 
the image of an original point of the surface) 181. The number of points of tangency 
changes by 4 as the point, which represents the direction of the radius vector, crases  
the line corresponding to the directions of the normals at parabolic points. This is 
the only way for this number to be changed. Suppose that for the direction of a 
radius vector lying within the area 1 (see figure 3(a)) the total number of poina of 
tangency (on the whole E) is 2N. Then for V / T  situated on the lines BE or ED 
there are 2(N + 1) points of tangency (two parabolic points have been added). The 
number of points of tangency for r / r  lying in areas 2 and 4, on lines AE or EC, and 
in area 3 are given by 2(N + 2), 2(N + 3) and 2(N + 4), respectively. The angle 0 
appearing in figure 2 is just the distance between the point r / r  and the image of the 
line of parabolic points on the Gauss map. 

(iv) Points at which the FS becomes flat [12] manifest another type of local 
geometty. The Fs with such a point is a boundary case between convex surfaces 
and surfaces with a 'crater'. Near this flattening point, the departure of the FS from 
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the tangent plane is a fourth-order form of the local coordinates within the surface. 
If the point of tangency is a point of such a kind, then 

A, 0: r1f2.  (15) 

Let us assume for definiteness that the departure of the FS ftom the plane tangent 
to the FS at the flattening point is given in the leading order by 

Then, as the (elliptic) point of tangency approaches the flattening point, the Gaussian 
curvature decreases and 

A,,, 2Slh3-ff2D-lf3 Ae-2/3. (17) 

Here A0 is now the angle hetween the radius vector and the normal to the FS at the 
flattening point Equation (17) is valid at 

A0 >> DLf4r-3/4 (18) 

where the intermediate region is the region of crossover between the dependences 
(15) and (17) (see figure 3(b)). 

(v) Suppose that the lines of parabolic points on the FS cross at some point. In 
real metals, such a crossing occurs rather often; for example, the Fs of the form 
shown in figure 4 is encountered in MO, W and paramagnetic Cr [6,9,11]. 

( U )  (bl 
Figarm 3. Gauss maps of elemenls of the E. (a) l%e image of part of the E with two 
lines of parabolic p i n t s  AC and BD intersecting at the p i n t  E. Each p i n t  in areas 2 
and 4 is the image of the two p in ts  from the original pan of the Fs; each p i n t  in area 
3 is the image d four pin& each p i n 1  in area 1 does not have any original there. 
?he shaded areas mrrespond to mssover (the inequality (14) is broken there). n i s  
obviously is only one of the two kinds of inremeclion of the lines of parabolic p i n t s  
(b) Gauss map of the pan of the FS mntaining the p i n t  at which the R t e a "  flar 
The number of p i n u  of tangeney is mnstant for r f r lying in this region of directions. 
The shaded area corresponds to mssover (inequality (18) is broken there). 
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(a1 b )  
F@m 4 Clusing of the lines of parabolic points 011 the ps [It]: (a) fragment of the 
ps (‘octahcdmn’) in a metal belonging to L e  molyMenum group; (b) aoffing of lines 
ot parabolic points on this cavity of the ps (view h m  above). 

The departure of the FS from the plane tangent to the FS at this point of crossing 
is given by a thud-order form and we have 

In fact, this is a flattening point of another kind. The important feature of flattening 
points of tangency of any type is that they correspond to isolated points on the Gauss 
map (see figure 3). 

(vi) Let us assume that the FS contains finite flat elements. If the radius vector is 
parallel to the normal to such an element of the FS, it leads to the contribution of 
this ‘area of tangency‘ in the m. 

where Sflame is the square of this flat element. 
In fact, the FS of such a kind can hardly be stable: in this case, the Peierls [13] 

transition with the transformation of the lattice strucure should become energetically 
favourable (at least at sufficiently low temperatures). It is easy to see that there 
should be some correlation between the extremely slow damping of Fos as r -+ 03 

(here U a r-2 w(Akpbne r)) and the possibility of the Peierls transition. 
At this point we finish our consideration of the local geometry of the FS. Note that 

we have arrived at the remarkable conclusion that the exponent, which determines the 
damping of FOs as r + 00, depends on the local geometry at the points of tangency. 
Thus, one might build up a hierarchy of types of the FS local geometry with respect 
to the long-distance behaviour of the a. 

(1) Sphericof Fs. The amplitude of the FOS decreases as r-4; this exponent is 
given, generally, by elliptic or hyperbolic points of tangency and thus corresponds to 
a generic direction in a 3D metal. 

(2) CjZindricoI FS. The amplitude of the FOs decreases as F3. mis is the case of 
a zn metal, or the case of a toroidal FS cavity (see section 5 of [7J)t. 

(3) Flat FS. The amplitude of the FOS decreases as r-’ (one could imagine it as 
a FS of a 1~ metal). 

From our considerations, it follows that parabolic points (together with crossing 
points of the lines of parabolic points) should be placed ‘between’ spherical and 
cylindrical FSS. 

A ,  a &’. (19) 

A,,,,, a Sph”,. (20) 

t The point at which the ps becomes fiat also gives the P-’ law (see equation (15)). 
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3. Some applications 

Let us consider a metal near the electron topological transition (m) point 1141. The 
m is the restructuring of the Fs which oocurs when cF = cm (e ,  is the value of 
the electron energy that corresponds to the Wn Hove singularity). Depending on 
whether this singularity is due to an extremum or to a saddle point of the electron 
dispersion law, a new cavity of the FS appears (disappears), or a heck' connecting 
two FS cavities is brmed (disrupted). The difference z = cp - c, depends on the 
applied pressure (or, for example, the impurity concentration), so that the mr can he 
realized experimentally (see IlSj and references therein). The m causes distinctive 
singularities of thermodynamic and kinetic quantities [14-161. 

Near the m point, long-wavelength terms appear in the m owing to the existence 
of small diameters of the ~ s .  If the m results in the appearance of a new cavity of 
the ~s at z > 0, then 

x cos2 [(,,rem, 3 ws2si )1'2/h]. 
i = l  

Here ml, m2 and m3 are effective masses and the axes 2,,  2, and 6, (where 
zi = r cos O i )  are the main axes of the tensor of inverse effective masses, so that the 
electron dispersion law near the point of extremum can be written as 

N ( A d 2 / 2 m l  -k (Ap2)'/2m2 + ( A P , ) ~ / ~ T ~ , .  (22) 
If (instead of an extremum) one has a saddle point of the dispersion law, one should 
write, instead of (22), 

z = I(ApA2 + ( A ~ d ~ l / z m ~  - ( A P , ) ~ / ~ ~ I I  + (@/477$,)(A~,)~ (29  
(we mume that the ~s near the extrema1 point Ap = 0 possesses rotational symmetry 
with respect to the p ,  axis and is also symmetric with respect to the Ap, = 0 plane). 
In this case, the 'neck' of the Fs, which exists at z > 0, is NptUred at z < 0 (figure 5). 
Therefore, at IzI < eF there exist long-wavelength (Ak 5 (2mlz1)'/2/ti << ICF) terms 
in the m. The issue of significance here is that the angular dependence of these terms 
'rotates' by ?r/Z as the sign of z changes. 

Indeed, for example, at z < 0 and T I I ~ , ,  because of the small distance between 
the two sheets of the ~ s ,  there exists a long-wavelength component of the m with 
corresponding Ak = (2m [zl) l12 ji and amplitude m~Izlr-4/2h2?r4Emll. There 
are no long-wavelength oscillations at T I pB On the wntraly, for z > 0, the long- 
wavelength oscillations are absent at T I I P , .  For z > 0 and r I p,, owing to the small 
diameter of the ~s 'neck', the following long-wavelength term in the (T appears: 

v m ( r )  lrlpl N -(mil z / ~ % ~ 4 h 2 )  sin2[r(2m, z ) ' / ' ] .  

I1 . / 

At pz > 0, the fourth-order term in (U) gives rise to the appearance of lines of 
parabolic points on the FS near p = p ,  [16]t (see figure 5). Thus, for some directions 

t Note that parabolic points on h e  m themsekes are not peculiar from lhe viewpoint of the electron 
dispersion law. Generay: the lines of parabolic pinu may have nothing to do with Em or Van Hove 
singularities (see wtion 2 above). 
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c 

4 Z<'O 

--,-- 
i 

z c  0 2-0 Z Y O  

I b l  
Figum 5. (a) Disappearance and (b) appearance of Ihe lines of parabolic pints (indicated 
as bold lines) during the 'neck' formation [16]. 

of r forming an angle Opr with the p3 axis, the amplitude of the long-wavelength 
term in the ff behaves as r-''13 = r-4&3 instead of r-4. In the neighbourhood 
of these peculiar directions, there exists an additional small wavenumber of FOS, 
which is due to neighbouring pairs of points of tangency (elliptic and hyperbolic). At 
0 = Opr, each pair 'sticks together', giving the parabolic point of tangency and then 
disappearing. 

On the whole, the En; being a local 'event' in reciprocal space, in coordinate 
space results in dramatic restructuring of the long-wavelength terms in the CF. 

Obviously, knowledge of the ff is useful when one considers various collective 
phenomena in metals: screening, structure of spin glasses, etc. Let us mention for 
example the RKIW interaction [17-191. This indirect exchange interaction between 
the site (or impurity) spins is caused by exchange interaction between the localized 
spins and conduction electrons: 

Here J is the exchange constant, U is the Pauli matrix, and Si are the spins of the 
ion located in the site ri. The FXKY exchange integral is 

and its Fourier component 
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This kind of integral also appears when studying the electron-phonon interaction. 
It has singularities at the same points as does the ff (except at k = 0). These 
singularities are called Migdal-Kohn [3] singularities if the electron velocity vectors 
at the two contributing points of tangency are antiparallel. On the other hand, if they 
are parallel, then the singularity is called a Tiylor [20] singularity and these two cases 
should be treated separately. 

It turns out that at least for the great majority of cases there exists a quite simple 
relationship between the asymptotics of v(r) and JRKKy(r). Indeed, for a k e d  
direction of the radius vector, 

where .Jm and v(Ak)(r) are the terms in J- and the CF respectively, osdlating 
with the wavenumber Ak. 

It is well known that the magnetic order induced by the RKKY interaction (namely 
the helicity vector) depends on the geometry of the FS [IS]. Thus, the helicity vector is 
expected to be determined by the small diameter of the FS 1211. Therefore knowledge 
of the FS and the CF seems to allow one to make some predictions about the magnetic 
arrangement We expect, in particular, that the FIT may manifest itself in changes in 
magnetic ordering. 

4. Conclusion 

In this paper, we neglected the temperature effects, electron scattering and electron- 
electron interactions. The first two effects lead to the appearance of an exponentially 
decreasing factor in the cF as r * CO. The thud (i.e. Fermi-liquid interaction) 
probably leads to the renormalization of the coefficients (see, e.g., [U]). 

Anyway, the dependence of the asymptotic behaviour of the ff on the Fs geometry 
(including the local geometry) survives after taking these effects into account. This 
dependence should affect collective phenomena in metals. Indeed, one has to know 
the c~ to construct theories of alloying, screening, exchange magnetism, etc. We have 
investigated some features of the CF that seem to be interesting from this point of 
new. Among them are the following. 

(1) Cones of peculiar directions exist, corresponding to the lines of parabolic 
points on the FS. For these directions of the radius vector, the ff shows some specific 
features: 

(i) the attenuation of FOs is determined by a factor of T - - ' ' / ~  instead of the usual 
T - ~  (we doubt whether this small difference has any observable effect), 

(ii) the number of M periods changes as the direction of the radius vector crosses 
these cones and 

(iii) on one side of such a cone, one of the FO periods appears to become large 
(it goes to infinity as the direction of r approaches the cone). 

(2) Isolated peculiar directions exist, which correspond to the crossings of the 
lines of parabolic points on the FS (flattening points). 

(3) The CF is restructured when the h"rT occurs. 
We have also provided one example showing how an asymptote of the RKKY 

exchange integral depends on the asymptotic behaviour of the CF. 
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