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Spatial correlation of conduction electrons in a metal with a
complicated geometry of the Fermi surface
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F L Kapitza Institute for Physical Problems, Russian Academy of Sciences, Voroby-
ovskoye Chaussée 2, Moscow 117334, Russia
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Abstract. The 'density—density’ correlation function (CF) of conduclion electrons in a
metal is investigated. It is shown that the asymptotic behaviour of the ¢F depends on
the shape and the local geometry of the Fermi surface (FS). In particular, the exponent
of the power law which describes the damping of Friedel oscillations at r — oo (—4 for
an isotropic Fermi gas) is determined by the local geometry of the F$. The applications
of the results obtained to calculations of the ¢F in a metal near the electron topological
transition and of the RKKY exchange integral arc considersd as well.

1. Introduction

In this paper we investigate the ‘density-density’ correlation function {(CF) of
conduction electrons in a metal at T =0.
It is well known that the CF of an electron gas can be written as
. 2
_1 _ 2 ip.r\ d&p
v(r) = ={An(r)) An(ry)) — &(r, —7y) = = |/ ., EXP (—ﬁ—) kY

T=ry -7

®

Here the angular brackets indicate the average, An(r) = n(r) — 7 is the departure
of electron density »n(r) from its average value 7,

_J1 e(p) < €p
"p = {0 €(p) > €

is the Fermi distribution function, p is the momentum and ez is the Fermi energy.
Note that equation (1) is valid for any (not necessarily isotropic) dispersion law e(p).

Let us recall that, for e(p) = p?/2m, equation (1) leads to the following
expression for the CF [1]:

w(r) = (3h/2xppri) cos’(ppr/h) > h/pp 3

(pp is the Fermi momentum), which contains Friedel oscillations (Fos) [2] with the
wavenumber 2p; /f.

@
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One can easily determine the wavenumbers of the Fos (if the direction of the
radius vector r is given) also in the case of an arbitrary dispersion law. Indeed, the
long-waveleagth behaviour of the CF (equation (1)) is determined by the singularities
of the integral given by

per ‘p“r

= pL=p-—— “)

S(py) =/ﬂpd2P.L .=

as a function of py. Obviously, S(p,) is simply the square of the section of the
Fermi surface (Fs) formed by a plane perpendicular to the vector p and located at
the distance p from the origin in p-space. Therefore, the singularities that we are
interested in correspond to the tangencies of the FS to planes perpendicular to r.
The nature of these singularitics depends on the local geometry of the FS near the
points of tangency.

Therefore the wavenumbers Ak;; of the FOs are the distances in p-space between
planes tangent to the Fs and perpendicular to r (figure 1). It is well known that
the wavenumbers Ak;; also correspond to the Migdal-Kohn [3] singularities in the
spectrum of phonons propagating in the direction = /r, as well as to singularities in
the longitudinal plasmon spectrum (cf [4]), etci. Thus, the vectors Ak;; r/r define
the distinct points in the reciprocal space; since the present paper is devoted to the
spatial correlation of electrons, we shall study the effects that occur in the real space.

Figure 1. Rather a simple FS (‘dumb-bell’) for the radius vector r||r| generates eight
different wavenumbers of Fos (owing to the symmetry, Ak = Aksg, Ak = Ak,
Aku = Ak5 = Akj;, Akls = &km, Akm = Ak.ﬁ and Akzq = Ak_‘gs). The
encircled numbers enumerate the points of tangency for this case. The total number
of wavenumbers depends on the direction of »; for »||r; there ic only the wavenumber
ak.

T Also, the quantities (Ak.-,)'1 are proportional to the periods of oscillation of the sound absorption
coefficient in a magnetic field [5].
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L8

El‘l‘ipﬁc points  Hyperbolic points

Figure 2. Parabolic point on the Fs (placed at the origin of local coordinates &£, £,
£z, where &; is parallel to the normal). For a small value of the angle & > O, there
are two points of tangency in the vicinity of the parabolic point: elliptic {with £; < 0)
and hyperbolic {with £; > 0) and, correspondingly, the small wavenumber Ak o ¢%/2,
As §# — 40, these points of tangency approach each other; at 8 = 0, they coincide at
the parabolic point; at & < 0, there are no points of tangency in the vicinity of this
parabolic point {see also figure 3(a)).

One can also come to the same conclusions if one considers the Fourier
component of the C¥ given by

2 3
vk = =2 [ nynpuse iy ®

which is proportional to the volume of the intersection of the FS and its analogue,
shifted by the vector fik. The singularities of this quantity (as a function of k)
correspond to the tangents of the Fs to its shifted analogue, as well as to k = 0. We
may conclude tentatively (see section 2 below) that the way in which FOs are damped
at' v — oo is determined by the local geometty of the FS at the points of tangency.
Thus, the behaviour of the CF, as well as of many other electronic properties of metals
[6], is determined by the FS geometry.

It turns out that one can describe the asymptotic behaviour of the CF at large r
by the formula

1 r

)= e

> A7 A; exp(idk;r). 6)
ij

Here r, = 713 s the average distance between electrons, and the indexes i, j label
the points of tangency. The factors A; (which are, in general, functions of r as well
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as of r/r) depend on the local geometry of the Fs at the corresponding points of
tangency and have a dimensionality of inverse length. Owing to the central symmetry
of the Fs, expression (6) is real (obviously, Ak;; = —Ak;,).

At ¢ = j, Ak,;; = 0and the corresponding terms in the CF decrease monotonically
as r increase. These terms are due to the singularity (namely, the discontinuity of
the first derivative) of (k) at k = 0.

Usually, one can write the validity condition for equation (6) as Ak,; r > 1 for
any i # j. Note that the wavenumbers Ak,; (as well as their total number) depend
on the direction of the radius vector ».

So far we have discussed the electron gas with an arbitrary dispersion law. The
ooordinate dependence of the CF of conduction ¢lectrons in a real metal is not totally
covered by equation (1). In order to describe this case, one should take into account
the influence of the periodic potential of the crystal lattice not only on the spectrum
but also on the electron wavefunctions; the wavefunctions that should now be used are
the Bloch waves (instead of plane waves). This topic has been considered in detail
in our previous article {7]. The qualitative results of this straightforward although
somewhat cumbersome consideration are listed below.

(1) Because of the broken translation invariance, the coordinate dependence of
the CF v{r;,r,) is not reduced to the dependence oniy on the difference r = r; — 7,
between its arguments. If the value of » is fixed, v(»,r;) is a periodic function of
1'[:

vir,r) =v(r,r+2)=v(r,+a,r+r +a) )

where a is any lattice period.

(2) Let us keep r = constant and average v(r;,r;) over r;. Denote the quantity
obtained by v(r). Its asymptotic behaviour will be similar to that described by
equation (6). The wavenumbers of the FOs are to be determined in the same way;
the only difference is that now one should imagine the Fs as a periodic surface ir the
reciprocal space (and not restricted to the first Brillouin zone alone!). Therefore, the
expression for v(r) should contain a summation over the reciprocal-lattice vector b;
terms with b # 0 (Umkiapp terms) oscillate with a wavenumber Ak;; +b-7/r.

(3) The CF contains a term whose oscillation wavelength is the inverse diameter
of the Fs. Note, however, that if the Fs is open, a region of radius vector r directions
can exist in which »(») does not oscillate at all.

Let us now consider the dependence of the CF on the local geometry of the Fs.
For simplicity, we shall restrict ourselves to the analysis of equations (1) and (6); this
approach may be easily generalized for the case of conduction electrons in a real
metal {7].

2. The effect of the local geometry of the Fermi surface on the correlation function

From equation (6), it follows that each term in the CF contains the factors A;, which
depend on the local geometry of the Fs at each of the two contributing points of
tangency. The expressions for A;(r) for various cases are listed below. We shall not
describe the calculations here; this type of description can be found in [7).

Let us keep the direction of the radius vector r fixed and consider the factor A;,
corresponding to the ith point of tangency.
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(i) If it is an elliptic point, then
Ay = 267112 ®

where G is the Gaussian curvature (product of the principal curvatures [8]) of the Fs.
(ii) For a hyperbolic point of tangency, one obtains

Ay, = £2|G|V? ©)

where the sign depends on the direction of the radius vector (i.e. whether it is » or
-r).

In these cases, A does not depend on r, and the amplitude of the FOs
corresponding to a pair of elliptic and/or hyperbolic points of tangency decreases
at r — o0 as v,

(iif) The domains of elliptic and hyperbolic points on the Fs are separated by lines
of parabolic points. Apart from a very few exceptions (Na, K, Cs, Rb and Bi), the Fss
of real metals are rather complex and do contain the lines of parabolic points [6, 9].

In the generic case, one can choose the local coordinates £;, £, on the Fs in such
a way that the departure £, of the Fs from the plane, which is a tangent at a parabolic

point, is
E3(£,&;) = C& - BE} (10)

(here we restrict ourselves to the leading order in =, y). We shall assume, for
convenience, that B > 0and C > 0.
If the point of tangency is parabolic, then

Apyy =~ {ZIC[sin(-:r /12)IT(E) /(3”401/331/21:)} Moo Pl5. 1)

Here K is the elliptic integral, " is Euler’s gamma function and K[sin{x / 12)]1"(%) s
1.5.

Thus we immediately see that, if parabolic points of tangency appear at a given
direction of », then the amplitude of the cotresponding term in the CF decreases as
r~1/3 e slower than in the usual case. Because parabolic points on the Fs are
not isolated but form continuous lines, there exist cones of radius vector directions
corresponding to the presence of parabolic points of tangency.f

Let us now denote by Af the angle between the normal at the parabolic point
and the projection of the radius vector onto the plane perpendicular to the line of
parabolic points (figure 2). At Af < 0, there are no points of tangency near the
parabolic points. At A@ > 0, however, both eiliptic and hyperbolic points of tangency
exist and both approach a parabolic point as A8 — 0. Therefore in the cF there
appears an additional long-wavelength term which has the wavenumber

2 % 3'3120“/2(-A8)3/2.

t If the Ps contains parabolic points, then the singularities of kinetic characteristics of the metal are
enhanced for the corresponding directions of the quasi-momentum vector [10, H].
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Because of the vicinity of a parabolic point, equations (8) and (9) should be
modified (one may not take into account the terms quadratic in x, ¥ only). Thus, for
an elliptic point (figure 2, z < 0), we have

Ag = BT(3C 80) V{1~ [5iC?/16 x 312 (AB)3f2](1/r)} 12)
and, for a hyperbolic point, we have
Anp = iB™V2(3C AG) V41 + [CV2 12032 AGY[1 - (Sn/8)il(1/7)}.  (13)

This distinction between elliptic and hyperbolic points is not so surprising. One has
to remember that the singularities of v(k) corresponding to elliptic and hyperbolic
peints of tangency are somewhat different.

Both equation (12) and equation (13) are valid at

Ab > (rPjO)V3, (14)

Suppose that at A8 < 0 there exist 2" points of tangency (here we are taking
into account the symmetry of the Fs) and, therefore,

N 14NN =1)/2=NWN+3)/2-1

different wavenumbers of FOs. At A = 0 there appear two new (parabolic) points
of tangency, and the amount of FO wavenumbers increases by A" + 2. Then, at
0 < A8 < (r?/C)'/3, the crossover occurs (the contribution of each parabolic point
of tangency turns into the sum of contributions of elliptic and hyperbolic points of
tangency) and finally at A8 > (r?/C)V/? there are 2(N +2) points of tangency and

(N + 2N +5)/2-1

FO wavenumbers.

Let us consider the Gauss map of the Fs (figure 3(z)). The Gauss map is a
mapping of the surface onto the unit sphere, induced by the normal at each point
of the surface (the direction of the normal gives a point of the sphere, thus giving
the image of an original point of the surface) [8]. The number of points of tangency
changes by 4 as the point, which represents the direction of the radius vector, crosses
the line corresponding to the directions of the normals at parabolic points. This is
the only way for this number to be changed. Suppose that for the direction of a
radius vector lying within the area 1 (see figure 3(a)) the total number of points of
tangency (on the whole Fs) is 2A". Then for »/r situated on the lines BE or ED
there are 2(N + 1) points of tangency (two parabolic points have been added). The
number of points of tangency for »/r lying in areas 2 and 4, on lines AE or EC, and
in area 3 are given by 2(N + 2), 2(N + 3) and 2(N + 4), respectively. The angle ¢
appearing in figure 2 is just the distance between the point »/» and the image of the
line of parabolic points on the Gauss map.

(iv} Points at which the Fs becomes flat [12] manifest another type of local
geometry. The Fs with such a point is a boundary case between convex surfaces
and surfaces with a ‘crater’. Near this flattening point, the departure of the FS from
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the tangent plane is a fourth-order form of the local coordinates within the surface,
If the point of tangency is a point of such a kind, then

Agq x 712, (15)

Let us assume for definiteness that the departure of the Fs from the plane tangent
to the Fs at the flattening point is given in the leading order by

&5(£1.6,) = D(&] + 63)* = DEd. (16)

Then, as the (elliptic) point of tangency approaches the flattening point, the Gaussian
curvature decreases and

Ay ~ 95/63=1/2 =173 A g-2/3 (17)

Here A@ is now the angle between the radius vector and the normal to the Fs at the
flattening point. Equation (17) is valid at

A8 > DY4p—3/4 (18)

where the intermediate region is the region of crossover between the dependences
(15) and (17) (see figure 3(b)).

(v) Suppose that the lines of parabolic points on the Fs cross at some point. In
real metals, such a crossing occurs rather often; for example, the Fs of the form
shown in figure 4 is encountered in Mo, W and paramagnetic Cr [6,9, 11].

{a) ¥:)

Figure 3. Gauss maps of elements of the Fs. (2) The image of part of the F5 with two
lines of parabolic points AC and BD intersecting at the point E. Each point in areas 2
and 4 is the image of the two points [rom the original part of the FS; each point in area
3 is the image of four points; each point in area 1 does not have any original there.
The shaded areas correspond to crossover (the inequality (14) is broken there). This
obviously is only one of the two kinds of intersection of the lines of parabolic points.
(&) Gauss map of the part of the Fs contajning the point at which the Fs becomes flaL
The number of points of tangency is constant for »/r lying in this region of directions.
‘The shaded area corresponds to crossover (inequality (18) is broken there).
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{a) (b)

Figure 4. Crossing of the lines of parabolic points on the rs [11]: (2) fragment of the
Fs (“octahedron’) in a metal belonging to the molybdenum group; (#) crossing of lines
of parabolic points on this cavity of the FS (view from above).

The departure of the Fs from the plane tangent to the Fs at this point of crossing
is given by a third-order form and we have

Ay o 713, (19)

In fact, this is a fAattening point of another kind. The important feature of flattening
points of tangency of any type is that they correspond to isolated points on the Gauss
map (see figure 3).

(vi) Let us assume that the FS contains finite flat elements. If the radius vector is
parallel to the normal to such an element of the Fs, it leads to the contribution of
ihis ‘area of tangency” in the CR:

Aplanc x Sp[aner (20)

where S, 18 the square of this flat element.

In fact, the FS of such a kind can hardly be stable: in this case, the Peierls [13]
transition with the transformation of the lattice strucure should become energetically
favourable {at least at sufficiently low temperatures). It is easy to see that there
should be some correlation between the extremely slow damping of FOs as r — oo
(here v o r2 cos(Ak,,,. 7)) and the possibility of the Peierls transition.

At this point we finish our consideration of the local geometry of the Fs. Note that
we have arrived at the remarkable conclusion that the exponent, which determines the
damping of FOs as r — co, depends on the local geometry at the points of tangency.
Thus, ore might build up a hierarchy of types of the Fs local geometry with respect
to the long-distance behaviour of the CF.

(1) Spherical Fs. The amplitude of the Fos decreases as r—+; this exponent is
given, generally, by elliptic or hyperbolic points of tangency and thus corresponds to
a generic direction in a 3D metal.

(2) Cylindrical Fs. The amplitude of the FOs decreases as r—>. This is the case of
a 2D metal, or the case of a toroidal Fs cavity (see section 5 of [7])t.

(3) Flat Fs. The amplitude of the Fos decreases as »~2 (one could imagine it as
a Fs of a 1D metal).

From our considerations, it follows that parabolic points (together with crossing
points of the lines of parabolic points) should be placed ‘between’ spherical and
cylindrical Fss.

1 The point at which the s becomes flat also gives the r—> law (see equation (15)).
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3. Some applications

Let us consider a metal near the electron topological transition (ETT) point [14]. The
ETT is the restructuring of the Fs which occurs when ep = e (g, is the value of
the electron energy that corresponds to the Van Hove singularity). Depending on
whether this singularity is due to an extremum or to a saddle point of the electron
dispersion law, a new cavity of the Fs appears (disappears), or a ‘neck’ connecting
two Fs cavities is formed (disrupted). The difference z = ¢y — ¢, depends on the
applied pressure (or, for example, the impurity concentration), so that the ETT can be
realized experimentally (see [15] and references therein). The ETT causes distinctive
singularities of thermodynamic and kinetic quantities [14-16].

Near the ETT point, long-wavelength terms appear in the CF owing to the existence
of small diameters of the Fs. If the ETT results in the appearance of a new cavity of
the Fs at 2z > 0, then

4 = 3
Vm(‘l") = —ﬁ?ﬁ (mlmzmg/r4 Z(m, COS2 9,))
i=1

3 172

x cos? [(erz:mi cos? 9,-) /ﬁ] {21)
i=l1

Here m;, m, and m; are effective masses and the axes #;, #, and #; (where

x; = rcos §;) are the main axes of the tensor of inverse effective masses, so that the

electron dispersion law near the point of extremum can be written as

Rl (Ap])2/2m1 + (Apz)zfzmz + (Ap3)2/2m3. (22)

If (instead of an extremum) one has a saddle point of the dispersion law, one should
write, instead of (22),

22 [(Ap)* + (Apy)?]/2m, — (Apg)/2my + (B/4mi)(Aps)* (23)

{we assume that the Fs near the extremal point Ap = 0 possesses rotational symmetry
with respect to the p; axis and is also symmetric with respect to the Ap; = 0 plane).
In this case, the ‘neck’ of the Fs, which exists at » > 0, is ruptured at z < 0 (figure 5).
Therefore, at |z| < e there exist long-wavelength (Ak < (2m|z|)/?/h < ki) terms
in the cF. The issue of significance here is that the angular dependence of these terms
‘rotates’ by = /2 as the sign of » changes.

Indeed, for example, at z < 0 and ri|py, because of the small distance between
the two sheets of the Fs, there exists a long-wavelength component of the Fos with
corresponding Ak = (2my|z})/2/h and amplitude m3 |z|r=*/2h2x*mm,. There
are no long-wavelength oscillations at » 1 p;. On the contrary, for z > 0, the long-
wavelength oscillations are absent at »{|p;. For z > 0 and r L p,, owing to the small
diameter of the Fs ‘neck’, the following long-wavelength term in the CF appears:

VErr(?‘)le o~ —(mnz/w“ﬁr‘fiz)sinz[r(zm_l_z)lle_

At 3z > 0, the fourth-order term in (23) gives.rise to the appearance of lines of
parabolic points on the Fs near p = p [16]f (see figure 5). Thus, for some directions

} Note that parabolic points on the FS themselves are not peculiar from the viewpoint of the electron
dispersion law. Generally, the lines of parabolic points may have nothing to do with ETT or Van Hove
singularities (see section 2 above).
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Figare 5, (4) Disappearance and (§) appearance of the lines of parabolic points (indicated
as bold lines) during the ‘neck’ formation [16].

of r forming an angle 6, with the p; axis, the amplitude of the long-wavelength
term in the CF behaves as r~!/* = »~4r2/3 instead of r~*. In the neighbourhood
of these peculiar directions, there exists an additional small wavenumber of Fos,
which is due to neighbouring pairs of points of tangency (elliptic and hyperbolic). At
8 = 8,;, cach pair ‘sticks together’, giving the parabolic point of tangency and then
disappearing,

On the whole, the ETT, being a local ‘event” in reciprocal space, in coordinate
space results in dramatic restructuring of the long-wavelength terms in the CF.

Obviously, knowledge of the CF is useful when one considers various collective
phenomena in metals: screening, structure of spin glasses, etc. Let us mention for
example the RKKY interaction [17-19]. This indirect exchange interaction between
the site (or impurity) spins is caused by exchange interaction between the localized
spins and conduction electrons:

'H=%Za’-5,-6(r—r,-). (24)

Here J is the exchange constant, o is the Pauli matrix, and S; are the spins of the
jon located in the site r;. The RKKY exchange integral is

_ J\2 ng(l—ng) i{lg—q')-r\ dPqd®¢
Jucey(r) =<2 (2) [ 2 sy (V) Tl @)
and its Fourier component

N JY ng(l—ng_p) d3¢g
iy (k) = -2 (%) | (2why 26)
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This kind of integral also appears when studying the electron-phonon interaction.
It has singularities at the same points as does the CF (except at & = 0). These
singularities are called Migdal-Kohn [3] singularities if the electron velocity vectors
at the two contributing points of tangency are antiparaliel. On the other hand, if they
are parallel, then the singularity is called a Taylor [20] singularity and these two cases
should be treated separately.

It turns out that at least for the great majority of cases there exists a quite simple
relationship between the asymptotics of »(r) and Jpyyxy(r). Indeed, for a fixed
direction of the radius vector,

JBE o« v 2R (r)  AR#£0 @7

where J$Z5S, and L(8%)(r) are the terms in Jpyyy and the CF respectively, oscillating
with the wavenumber Ak.

It is well known that the magnetic order induced by the RKKY interaction (namely
the helicity vector) depends on the geometry of the Fs [18]. Thus, the helicity vector is
expected to be determined by the small diameter of the £s [21]. Therefore knowledge
of the Fs and the CF secems to allow one 10 make some predictions about the magnetic
arrangement. We expect, in particular, that the ETT may manifest itself in changes in
magnetic ordering.

4. Conclusion

In this paper, we neglected the temperature effects, electron scattering and electron-
electron interactions. The first two effects lead to the appearance of an exponentially
decreasing factor in the CF a8 r — oco. The third (i.e. Fermi-liquid interaction)
probably leads to the renormalization of the coefficients (see, e.g., {22]).

Anyway, the dependence of the asymptotic behaviour of the CF on the FS geometry
(including the local geomeiry) survives after taking these effects into account. This
dependence should affect collective phenomena in metals. Indeed, one has to know
the CF to construct theories of alloying, screening, exchange magnetism, etc. We have
investigated some features of the CF that seem to be interesting from this point of
view. Among them are the following.

(1) Cones of peculiar directions exist, corresponding to the lines of parabolic
points on the Fs. For these directions of the radius vector, the CF shows some specific
features:

(i) the attenuation of Fos is determined by a factor of »~!V/3 instead of the usual
r—4 (we doubt whether this small difference has any observable effect),

(ii) the number of FO periods changes as the direction of the radius vector crosses
these cones and

(iii) on one side of such a cone, one of the FO periods appears to become large
(it goes to infinity as the direction of » approaches the cone).

(2) Isolated peculiar directions exist, which correspond to the crossings of the
lines of parabolic points on the Fs (flattening points).
(3) The CF is restructured when the ETT occurs.

We have also provided one example showing how an asymptote of the RKKY
exchange integral depends on the asymptotic behaviour of the CF.
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